

MM54C195/MM74C195 4-Bit Registers

General Description

The MM54C195/MM74C195 CMOS 4-bit registers feature parallel inputs, parallel outputs, J-K serial inputs, shift/load control input and a direct overriding clear. The following two modes of operation are possible:

Parallel Load

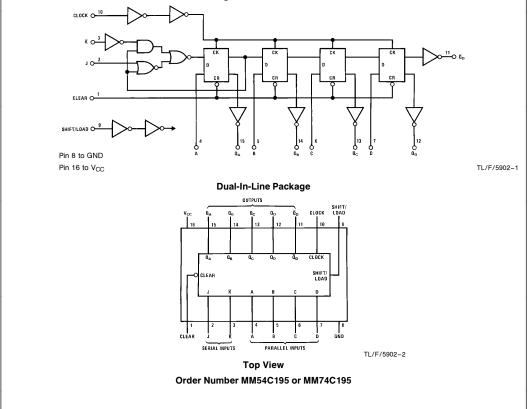
Shift in direction QA towards QD

Parallel loading is accomplished by applying the four bits of data and taking the shift/load control of input low. The data is loaded into the associated flip-flops and appears at the outputs after the positive transition of the clock input. During parallel loading, serial data flow is inhibited.

Serial shifting is accomplished synchronously when the shift/load control input is high. Serial data for this mode is entered at the J-K inputs. These inputs allow the first stage to perform as a J-K, D, or T-type flip flop as shown in the truth table.

Features

- Medium speed operation
- High noise immunity
- Low power
- Tenth power TTL compatible
- Supply voltage range
- Synchronous parallel load
- Parallel inputs and outputs from each flip-flop
- Direct overriding clear
- J and K inputs to first stage
- Complementary outputs from last stage
- Positive-edge triggered clocking
- Diode clamped inputs to protect against static charge


Applications

- Automotive
- Data terminals
- Instrumentation
- Medical electronics

- Industrial electronics
- Computers

Schematic and Connection Diagrams

© 1995 National Semiconductor Corporation TL/F/5902 RRD-B30M105/Printed in U. S. A.

MM54C195/MM74C195 4-Bit Registers

February 1988

8.5 MHz (typ.) with 10V supply and 50 pF load

Drive 2 LPTTL loads

0.45 V_{CC} (typ.)

100 nW (typ.)

3V to 15V

Office (Distribute on few sould bill be and supplied to an			ver Dissipation (P _D) Jual-In-Line	700 mV		
Voltage at			mall Outline			500 mW
Operating Temperature Range Operating V _{CC} Range			erating V _{CC} Range	3V to 15		
MM54C		-55°C to +125°C Abs -40°C to +85°C	olute Maximum V _{CC}			18V
MM74C	195	-40 C to +85 C Lea	d Temperature (Soldering,	10 sec.)	260°C	
DC Ele	ectrical Characteris	tics Min/Max limits apply a	across temperature range ur	nless otherw	ise noted	I
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
моѕ то сі	MOS					
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$	3.5			V
		$V_{CC} = 10V$	8.0			V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5V$			1.5	V
		$V_{CC} = 10V$			2.0	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V$	4.5			v
	Logical i calpatitonage	$V_{CC} = 10V$	9.0			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5V$			0.5	v
		$V_{CC} = 10V$			1.0	V
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15V$		0.005	1.0	μA
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V$	-1.0	-0.005		μA
	Supply Current	$V_{CC} = 15V$		0.05	300	μA
		VCC 13V		0.00	500	μΛ
			V 15			V
V _{IN(1)}	Logical "1" Input Voltage	54C $V_{CC} = 4.5V$ 74C $V_{CC} = 4.75V$	$V_{CC} - 1.5$ $V_{CC} - 1.5$			
V _{IN(0)}		54C $V_{CC} = 4.5V$	•((1.0		0.0	v
	Logical "0" Input Voltage	$V_{CC} = 4.5V$ 74C $V_{CC} = 4.75V$			0.8 0.8	v v
N/	Logical "1" Output Voltage		-360µA 2.4		0.0	v
V _{OUT(1)}		54C $V_{CC} = 4.5V, I_O = -74C V_{CC} = 4.75V, I_O =$				v
Maximu	Logical "0" Output Valtage	54C $V_{CC} = 4.5V, I_{O} = 3$			0.1	v
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 4.5V, I_O = 3$ 74C $V_{CC} = 4.75V, I_O = 3$	'		0.4 0.4	v v
	IVE (See 54C/74C Family Char				0.1	
SOURCE	Output Source Current	$V_{CC} = 5V, V_{IN(0)} = 0V$ $T_A = 25^{\circ}C, V_{OUT} = 0V$	-1.75			mA
1	Output Source Current					
SOURCE	Output Source Current	$V_{CC} = 10V, V_{IN(0)} = 0V$ $T_A = 25^{\circ}C, V_{OUT} = 0V$	-8.0			mA
1	Output Sink Current					
ISINK	Output Sink Current	$V_{CC} = 5V, V_{IN(1)} = 5V$ $T_A = 25^{\circ}C, V_{OUT} = V_{CC}$	1.75			mA
I _{SINK}	Output Sink Current	$V_{CC} = 10V, V_{IN(1)} = 10V$				
SINK		$T_A = 25^{\circ}C, V_{OUT} = V_{CC}$	8.0			mA
	solute Maximum Ratings" are those value meant to imply that the devices should					

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd}	Propagation Delay Time to a Logical "0" or Logical "1" from Clock to Q or \overline{Q}	$V_{CC} = 5V$ $V_{CC} = 10V$		150 75	300 130	ns ns
t _{pd}	Propagation Delay Time to a Logical "0" or Logical "1" from Clear to Q or \overline{Q}	$V_{CC} = 5V$ $V_{CC} = 10V$		150 50	300 130	ns ns
t _S	Time Prior to Clock Pulse that Data must be Present	$V_{CC} = 5V$ $V_{CC} = 10V$		80 35	200 70	ns ns
t _S	Time Prior to Clock Pulse that Shift/Load must be Present	$V_{CC} = 5V$ $V_{CC} = 10V$		110 60	150 90	ns ns
t _H	Time After Clock Pulse that Data must be Held	$V_{CC} = 5V$ $V_{CC} = 10V$		- 10 - 5.0	0 0	ns ns
tw	Minimum Clear Pulse Width (t_{WL} = t_{WH})	$V_{CC} = 5V$ $V_{CC} = 10V$		100 50	200 100	ns ns
t _W	Minimum Clear Pulse Width	$V_{CC} = 5V$ $V_{CC} = 10V$		90 40	130 60	ns ns
t _r , t _f	Maximum Clock Rise and Fall Time	$V_{CC} = 5V$ $V_{CC} = 10V$	5.0 2.0			μs μs
f _{MAX}	Maximum Input Clock Frequency	$V_{CC} = 5V$ $V_{CC} = 10V$	2.0 5.5	3.0 8.5		MHz MHz
C _{IN}	Input Capacitance	(Note 2)		5.0		pF
C _{PD}	Power Dissipation Capacitance	(Note 3)		100		pF

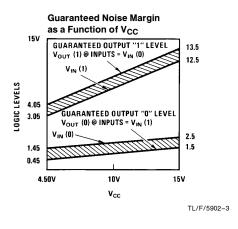
*AC Parameters are guaranteed by DC correlated testing.

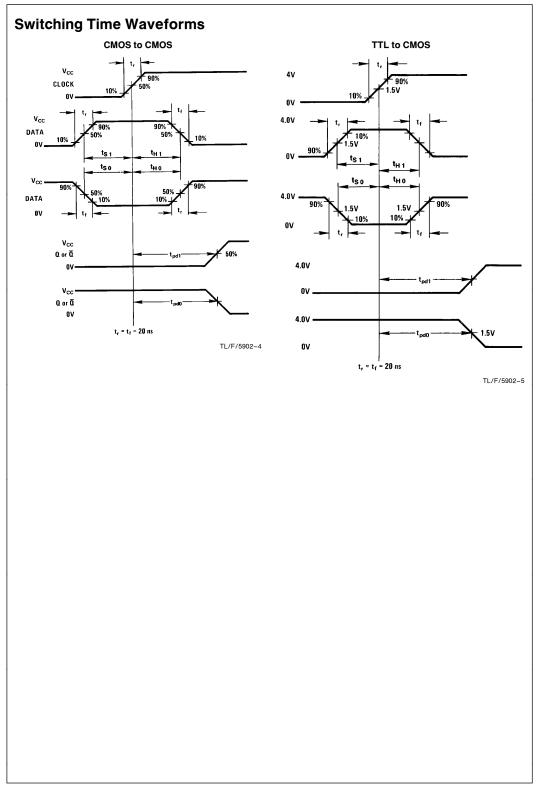
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

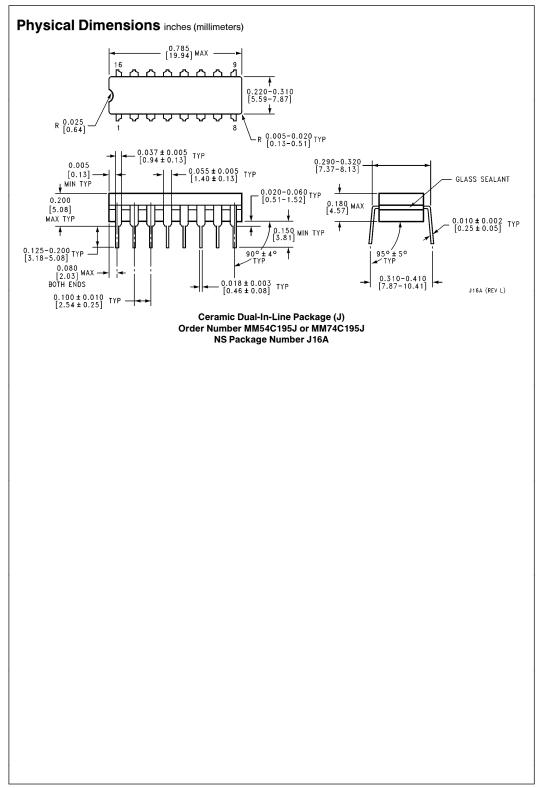
Note 2: Capacitance is guaranteed by periodic testing.

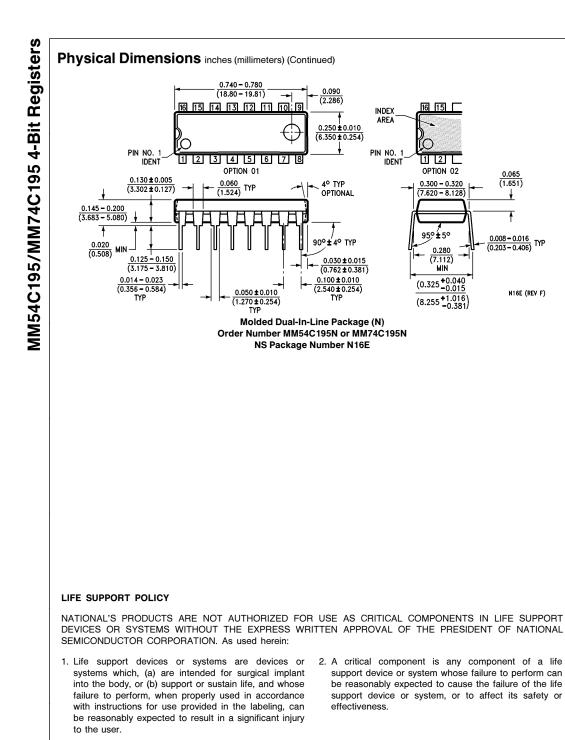
Note 3: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note AN-90.

Truth Table


Inputs AT t _n						
J	ĸ	Q _A	QB	QC	QD	$\overline{\mathbf{Q}}_{\mathbf{D}}$
L	Н	Q _{An}	Q _{An}	Q _{Bn}	Q _{Cn}	\overline{Q}_{Cn}
L	L	L	Q _{An}	Q _{Bn}	Q _{Cn}	Q _{Cn}
н	Н	н	Q _{An}	Q _{Bn}	Q _{Cn}	Q _{Cn}
н	L	Q _{An}	Q _{An}	Q _{Bn}	Q _{Cn}	Q _{Cn}


Note: H = High Level, L = Low Level


 $t_n = bit time before clock pulse$


 $t_{n\,+\,1}\,=\,\text{bit time after clock pulse}$

 $\mathsf{Q}_{\mathsf{A}\mathsf{n}} = \, \mathsf{State} \,\, \mathsf{of} \,\, \mathsf{Q}_{\mathsf{A}} \,\, \mathsf{at} \,\, \mathsf{t}_{\mathsf{n}}$

ŧ

ŧ

N16E (REV F)

	National Semiconductor	National Semiconductor	National Semiconductor	National Semiconducto
\mathbf{N}	Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
N	1111 West Bardin Road	Fax: (+49) 0-180-530 85 86	13th Floor, Straight Block,	Tel: 81-043-299-2309
	Arlington, TX 76017	Email: cnjwge@tevm2.nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-043-299-2408
	Tel: 1(800) 272-9959	Deutsch Tel: (+49) 0-180-530 85 85	Tsimshatsui, Kowloon	
	Fax: 1(800) 737-7018	English Tel: (+49) 0-180-532 78 32	Hong Kong	
		Français Tel: (+49) 0-180-532 93 58	Tel: (852) 2737-1600	
		Italiano Tel: (+49) 0-180-534 16 80	Fax: (852) 2736-9960	

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.